CRANIAL ULTRASONIC ASSESSMENT OF INFANTS WITH ACUTE BACTERIAL MENINGITIS

J.P. Soni
B.D.Gupta
M. Soni
M. Gupta
D.R. Dabi
K.R. Nemal

ABSTRACT

A prospective study was performed on 44 patients (newborn to one year old) with acute bacterial meningitis. Sonograms were obtained within 72 hours of diagnosis, and repeated on 7th, 14th or at an early date, if required. The spectrum of sonographic features of meningitis included normal scan (35.4%), echogenic sulci (63.7%) and parenchyma (29.5%), ventriculomegaly (59%), ventriculitis (35%), pseudo-porencephalic cyst (4.4%), extra axial fluid collection (4.4%), encephalomalacia (2.2%) and cerebral abscess (2.2%) in patients.

Key words: Bacterial-meningitis, Ultrasonography.

From the Department of Pediatrics, Regional Institute of Maternal and Child Health, Dr. S.N. Medical College, Jodhpur.

Reprint requests: Dr. J.P. Soni, Madhu Kunj, 23-G, Pokran House, Jodhpur 342 001.

Received for publication: May 19, 1994; Accepted: August 18, 1994

Acute bacterial meningitis still remains as one of the causes of infant mortality and morbidity even in the present antimicrobial era. Early diagnosis and appropriate medical and surgical intervention of the complications can reduce the morbidity and mortality to a considerable extent.

The use of sonography to examine these infants has rapidly increased in the last few years and the relative simplicity of the procedure, makes it an ideal method for early detection of complications and follow-up of these patients(1). Moorthy et al. have concluded that Cranial Ultrasonography (CR-USG) is a very effective diagnostic tool in infants with pyogenic meningitis particularly in the diagnosis of its complications. It is also useful for monitoring ventriculomegaly and cortical mantle thickness in these "children on follow up(2). Reader et al. have observed that sonography has a definite edge over computed tomography in demonstrating intra-ventricular septae(3).

The present study was undertaken to determine the sonographic findings in the patients with pyogenic meningitis within 72 hours of diagnosis and on follow-up screening.

Subjects and Methods

A prospective study was carried out in forty four infants of acute bacterial meningitis. Of them thirty one were males and thirteen were females. Ages ranged from newborn to one year, ten of them were under twenty eight days of age.

The criteria of diagnosis of pyogenic meningitis was—cerebrospinal fluid showing presence of polymorphonuclear leucocytes, more than 2 per cu mm in neonates and 1 or more per cu mm after the neonatal period; protein more than
120 mg/dl in neonates and more than 40 mg/dl after the neonatal period and sugar content less than 60% of the blood glucose (4). Cerebrospinal fluid was also examined microbiologically by Gram's staining, culture and sensitivity.

All infants with proven meningitis were subjected to sonography within seventy two hours of diagnosis and repeated in all on 7th or 14th day or at an early date if (a) new symptoms appeared, (b) repeat cerebrospinal fluid did not clear with antibiotic therapy, or (c) sudden deterioration of the infant's condition.

The scan were performed on 2D real time SIM 3000 OTC Biomedier with a 5 MHz transducer. Axial, coronal and sagittal scans were obtained through open sutures and fontanelles (5,6). A water bag over anterior fontanelle enabled sonologist to detect smaller anterior subdural effusion at the earliest. The sonograms were reviewed for presence of echogenic sulci, any abnormal increase or decrease in parenchymal echogenicity, ventricular size, ventriculitis (echogenic ependyma, ventricular strands and echoes within the ventricles), extra-axial fluid collection and for any evidence of abscess, pseudo-porencephaly or encephalomalacia.

CT scan was done in three patients—one each of sub and epidural effusion and encephalomalacia.

Results

A wide spectrum of sonographic abnormalities were observed in the present series of 44 infants of pyogenic meningitis. Of them, 16 had normal sonogram despite clinical and biochemical profile of pyogenic meningitis.

The qualitative increase in brightness and widening of sulci was the most common sonographic finding seen in 63.6% patients (Table I). The findings persisted (with treatment) in 5 (11%) patients, who developed other complications (Table II).

There were 12 cases having focal areas of increased echogenicity of brain parenchyma (Table I). Of these, two developed pseudo-porencephaly and one each developed brain abscess and encephalomalacia (Table III).

Ventriculomegaly was observed in 59% of infants and remained as such till the last sonography. Fifteen of them had evidence of ventriculitis. Ventriculitis was seen in the

<table>
<thead>
<tr>
<th>Finding</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>16</td>
<td>35.4</td>
</tr>
<tr>
<td>Echogenic sulci</td>
<td>28</td>
<td>63.6</td>
</tr>
<tr>
<td>Parenchymal opacities</td>
<td>12</td>
<td>29.5</td>
</tr>
<tr>
<td>Ventriculomegaly</td>
<td>24</td>
<td>59.0</td>
</tr>
<tr>
<td>Ependymitis</td>
<td>15</td>
<td>33.0</td>
</tr>
<tr>
<td>Choroid plexitis</td>
<td>10</td>
<td>22.0</td>
</tr>
<tr>
<td>Septae</td>
<td>8</td>
<td>17.6</td>
</tr>
<tr>
<td>Ventricular exudate</td>
<td>5</td>
<td>11.0</td>
</tr>
<tr>
<td>Pseudo-porencephaly</td>
<td>2</td>
<td>4.4</td>
</tr>
<tr>
<td>Subdural effusion</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Epidural effusion</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Encephalomalacia</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Abscess</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Dilated 3rd, 4th</td>
<td>15</td>
<td>33.0</td>
</tr>
<tr>
<td>Ventricle and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cisterna magna</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
form of echogenic irregular ependyma (33%), choroid plexitis (22%), septae (17.6%) and ventricular exudates (11%) (Table I).

Pseudo-porencephaly (4.4%), sub-dural effusion (2.2%), epidural effusion (2.2%), abscess (2.2%) and encephalomalacia (2.2%) were observed in patients with evidence of increased echogenicity of brain parenchyma and ventriculitis in their early sonogram.

The infants with uncountable pus cells and protein of >150 mg/dl in CSF had various types of sonographic abnormalities as compared to the infants with pus cells <1000/cumm and protein of <150 mg/dl (Table III). The CSF sugar ranged between 0 to 6 mg/dl in all infants.
In this study, 8 absconded and 4 expired, because of complications. One patient required ventriculoperitoneal shunt because of progressive abnormal increase in head size and ventricles on sequential sonographic evaluation.

Discussion

Pyogenic meningitis is a common cause of morbidity and mortality in the pediatric age group. Mortality is high during the acute stage while sequelae are often seen among survivors. An early recognition of structural changes is imperative for timely medical and surgical intervention. In this study, sonogram was normal in 35.4% infants, while 16%(7) and 37%(8) infants had normal sonogram in earlier studies.

The earliest and commonest abnormal sonographic finding in such infants is widening and increased echogenicity of sulci due to intense inflammatory exudate which accumulates in the depth of the fissures and sulci, particularly around pia and subarachnoid vessels(2,3). In this study it was observed in 63.6% infants while it was earlier reported in 82%(7) and Han et al.(8) infants. On subsequent sonography it persisted in 5 cases.

In the present study diffuse or patchy alteration in the parenchyma echogenicity due to cerebritis (Fig. 1) was seen in 29.5% cases. Chowdhary et al.(7) and Han et al.(8) reported this in 65% and 12% of cases, respectively.

Ventriculomegaly may be an early or late sonographic feature. An early ventriculomegaly represents non-obstructive normal pressure hydrocephalus and is usually reversible(9). However, late ventriculomegaly is because of obstruction secondary to accumulation of purulent exudate (acute) or due to chronic inflammatory changes in the subarachnoid space or within ventricles(10). Ventriculomegaly can also be because of brain atrophy.

We observed ventriculomegaly in 59% infants, while others reported it in 15-45% cases(1,8,11). Sequential sonography revealed their persistence in all cases till discharge.

The process of ventriculitis mainly originates from the choroid plexus. Ventriculitis is seen in the form of echogenic irregular ependyma, irregular hyperechoic choroid plexus and ventricular exudates. If disease process progresses, at 2-3 weeks sonography reveals septa formation, compartmentalization of ventricles, break in ependymal lying and in severe cases, the picture may be of multicystic encephalomalacia(5,12). In the present study, ventriculitis was observed in 15 cases in the form of ependymitis, choroid plexitis.
ventricular exudate and septae (Fig. 2) by sonography in 33, 22, 11 and 17.6% cases, respectively. Chowdhury et al. (7) demonstrated ventriculitis in the form of echogenic irregular ependyma, choroid plexitis, ventricular exudate and septae in 55, 20, 1.6 and 10% cases, respectively.

Abscess is seen as sharply circumscribed lesion with thick rim of intense echogenicity surrounding the hypoechoic centre. The abscess is usually found in an area that previously exhibit increased echogenicity and poor margination, representing a focus of cerebritis, vasculitis or parenchymal infarction that becomes infected (13). In the present study, a neonate with increased opacity of brain parenchyma, on sequential sonography revealed it on the seventh day of therapy. Fisher et al. reported it in 3% infants with pyogenic meningitis (1). Chowdhury et al. from their two studies (7,11), reported it in 8% cases.

The infections may manifest as cerebral edema characterized by diffuse effacement of the normal ventricles, sulci and gyri (10). The edema may cause a decreased cerebral blood flow and subsequent infarction. This is seen as an area of increased echogenicity which may later on break down to irregular echolucencies and pseudo-porencephalic cyst (14). It may communicate with ventricles or sub-arachnoid space depending upon the site and extent by breaking ependymal lining (15).

In the present study, two patients with evidence of increased parenchymal echogenicity and ventriculitis revealed pseudo-porencephalic cyst communicating with lateral ventricle, on sonography (Fig. 3). One of them expired and the other absconded.

Extra axial fluid collection (EAFC) displaces the brain away from the vault so sonogram reveals visible crown of the gyri,
shift of falx to opposite side (away from midline), compression of lateral ventricle on same side and dilatation of lateral ventricle on opposite side. EAFC will show lot of internal echoes in case of empyema, whereas EAFC is hypoechoic when fluid is sterile(1). In the present study, EAFC was seen in two cases. One of them had subdural effusion, CT confirmed (Fig. 4) which, improved following repeated aspiration. In this patient aspirated fluid was sterile on culture. Contrast CT scan of another patient of EAFC revealed epidural effusion (Fig. 5). In this patient, aspiration revealed thick pus. He absconded following the diagnosis. Chowdhury et al.(7) and Fisher et al.(1) reported subdural effusion in 8 and 18% cases of pyogenic meningitis, respectively.

The present study revealed a good correlation between sonographic abnormalities and cerebrospinal cell (pus) count and protein levels but not with CSF sugar, as reported by Chowdhury et al.(7).

In conclusion, realtime ultrasonography is a rapid, safe, and effective method for evaluating complications of meningitis, even when signs and symptoms are vague or nonspecific. Ultrasound provides accurate information regarding change in normal neuroanatomy; therefore, adequate medical treatment can be monitored by sequential sonography and surgical intervention can be done when indicated.

Acknowledgement

The authors acknowledge the Pool Officer Scheme of Council of Scientific and Industrial Research, Government of India for financial help. The authors are grateful to the principal Dr. S.N. Medical College, Jodhpur, for granting permission to carry
out this work. We are thankful to Mr. V. Sharma, L.K. Vyas and L. Sharma for typing this manuscript.

REFERENCES