Acknowledgement

The authors wish to express their gratitude and thank Dr. (Mrs.) P.M. Pai, Dean, K.E.M. Hospital for permission to publish this article.

REFERENCES

Ataxia Telangiectasia with Acute Lymphoblastic Leukemia

S.R. Rao
R.S. Iyer
B. Gladstone
S.H. Advani

Ataxia telangiectasia (AT) is an autosomal recessive syndrome characterized by ataxia, oculocutaneous telangiectasia, recurrent sinopulmonary infections and variable immune deficiencies. Individuals with AT are prone to develop lymphoreticular malignancies like leukemias and lymphomas(1). The management of patients of AT with acute lymphoblastic leukemia has not been uniform. We hereby report a case of AT who developed acute lymphoblastic leukemia (ALL) and was treated with reduced doses of chemotherapeutic drugs. He was in complete remission for 5 months but died following relapse of the disease.

Case Report

A 6-year-old boy, born of a nonconsanguinous marriage presented to the Tata Memorial Hospital in January with history of fever for a month and failure to thrive. On examination, we saw a dull appearing boy whose height (117 cm) and weight (16 kg) were between the 5th and 25th percentile for age. Prominent bulbar telan-
giectasia (Fig. 1) in both conjunctivae, café au lait spots were seen along with cervical and inguinal lymphadenopathy without any organomegaly. Neurological examination revealed marked ataxia, dysarthric speech with hypotonic muscles and diminished reflexes. Examination of the respiratory system was normal. On enquiry, parents gave a history of similar ataxic gait noticed in their 2-year-old daughter since she had started walking. On examining her, apart from ataxia she had no other relevant findings.

The patient’s hemoglobin was 12.8 g/dl, total white cell count was 21,100 with 24% blasts, 45% polymorphs, 22% lymphocytes, 1% monocyte, 8% eosinophils and a platelet count of 3.75×10^9/L. The chest X-ray showed a mediastinal mass. Bone marrow aspiration was hypercellular with 48% blasts of L1 morphology. The blast cells were negative for Sudan black, myeloperoxidase and PAS stains. Immunophenotype revealed 1a and CD 19 (B4) positive blasts the rest of the B and T markers [CD 10 (CALLA), CD 7 (pan T), CD 4, CD 8 (helper and suppressor T)] being negative. A cytocentrifuge on the cerebrospinal fluid did not reveal blasts. Hence he was diagnosed to have “Null” type of ALL. Other investigations to substantiate a diagnosis of AT in both the patient and his sibling are shown in the Table. The patient’s peripheral blood cytogenetics revealed breaks and gaps in 50% of the metaphases (Fig. 2) and a translocation (14; 14) (Fig. 3). He was induced with our chemotherapy protocol (Fig. 4) with a 25% reduction in doses. He completed II cycle smoothly and achieved complete remission. Subsequently he was started on the I 2A cycle (Fig. 4) with a 25% reduction in doses and omission of cranial radiotherapy to avoid any further neurological deterioration. He remained in remission for 5 months after which he had a recurrence of the mediastinal mass and succumbed to progressive disease.

Discussion

Ataxia telangiectasia is a multisystem hereditary disorder with an autosomal re-

![Fig. 1. Photograph showing telangiectasia.](image1)

![Fig. 2. A Metaphase spread showing a gap.](image2)
cessive inheritance occurring in 1 in 40,000 live births(3). Patients with AT are hypersensitive to ionizing radiation and are prone to develop malignancies(1).

The incidence of hematological malignancies in patients with AT is 10% of which 75% are non-Hodgkin lymphomas of various histologic subtypes(4). The

Fig. 3. Karyotype analysis showing a t(14;14).

<table>
<thead>
<tr>
<th>L-ASP</th>
<th>6000 U</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCR</td>
<td>1.4 mg</td>
</tr>
<tr>
<td>CYCLO</td>
<td>750 mg</td>
</tr>
<tr>
<td>PRED</td>
<td>40 mg</td>
</tr>
<tr>
<td>DAUNO</td>
<td>30 mg</td>
</tr>
<tr>
<td>IT MTX</td>
<td>12 mg</td>
</tr>
<tr>
<td>6-MP</td>
<td>75 mg</td>
</tr>
<tr>
<td>MTX</td>
<td>15 mg</td>
</tr>
<tr>
<td>ARA-C</td>
<td>100 mg</td>
</tr>
<tr>
<td>HD ARA-C</td>
<td>2 Gm</td>
</tr>
</tbody>
</table>

Fig. 4. Chemotherapy protocol-NCI-MCP-841 for acute lymphoblastic leukemia.
TABLE – Summary of Investigations

<table>
<thead>
<tr>
<th>Investigations</th>
<th>Patient</th>
<th>Sibling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood sugar (mg/dl)</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td>Alfa-fetoprotein & β-human chorionic gonadotrophin</td>
<td>raised</td>
<td>raised</td>
</tr>
<tr>
<td>Mantoux test</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>Cytogenetics on peripheral blood</td>
<td>t(14; 14) breaks & gaps</td>
<td>t(14; 14) breaks & gaps</td>
</tr>
<tr>
<td>Polymorph functions</td>
<td>phagocytic & bactericidal index decreased</td>
<td>phagocytic & bactericidal index decreased</td>
</tr>
<tr>
<td>T cell function</td>
<td>depleted</td>
<td>depleted</td>
</tr>
<tr>
<td>Serum immunoglobulins</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>Mental age</td>
<td>4 years</td>
<td>not evaluable</td>
</tr>
</tbody>
</table>

Remaining 20% comprise acute and chronic lymphocytic leukemias, adenocarcinoma of the gastrointestinal tract, basal cell carcinomas and brain tumors(1). Twenty-two cases of acute lymphoblastic leukemia have been reported in the Immune Deficiency Cancer Registry, none of them surviving longer than 36 months(2). Our patient developed ALL at the age of 6 years, while the sibling aged 2 years remains fine.

The exact reason as to why patients of AT develop malignancies is not known. The primary immunodeficiency state, chromosomal instability, defective DNA repair alone or in combination has been postulated. A fundamental genetic proclivity for recombinase error may promote translocation involving band 14q32 leading to a juxtaposition of a T cell receptor locus with a cellular proto-oncogene. Deregulation of the cellular proto-oncogene involved in the translocation would then cause the clonal expansion of the cells carrying the translocation(5). It has been proposed that the AT gene might be associated with faulty recombinase activity and this might account for the immunodeficiency, the high spontaneous frequency of chromosomal translocation and the deficient DNA repair(6). Our patient has also shown t(14; 14).

Published data regarding the treatment of ALL in AT patients suggests a poor responses to therapy(4). This is probably due to a relatively older age at presentation(7), a high initial white cell count, T or B cell surface markers(8), and presence of a mediastinal mass on chest roentgenogram(9). Our patient seems to have all the unfavorable prognostic factors.
Taking into account the experience of past workers(3) we omitted radiotherapy which is usually a part of the central nervous system directed therapy in our protocol (Fig. 4), though we continued to give him intrathecal methotrexate with a 25% reduction in dosage. Neurologically patient remained stable during remission. Despite a 25% reduction in the chemotherapeutic dosage our patient did achieve complete remission and remained in remission for 5 months. However, he developed recurrence of the mediastinal mass and succumbed to progressive disease after six months of diagnosis.

More information is required regarding dosage of chemotherapeutic agents so as to prolong remission in these patients.

REFERENCES

Acephalus Acardia Syndrome

J.B. Sharma
N. Gulati
S. Malik

Acephalus acardia syndrome is characterized by absence of head and heart with abnormality of limbs. The condition is extremely rare and is estimated to occur once in 40,000 deliveries(1). It is exclusively seen in monozygotic twin pregnancies where one fetus develops normally while the other becomes an amorphous mass with its blood supply coming from the normal fetus through anastomosis in...

From the Department of Obstetrics and Gynecology, Medical College and Hospital, Rohtak. Reprint requests: Dr. J.B. Sharma, c/o Dr. S.L. Sharma, 20 Jagdish Marg, Patiala 147 001. Received for publication: November 19, 1990; Accepted: June 30, 1992.