BRIEF REPORTS

Serum Zinc Levels in Newborns with Neural Tube Defects

Mohammad Jafar Golalipour, *Azad Reza Mansourian and †Abasali Keshtkar

From the Department of Embryology, Gorgan Congenital Malformation Research Center, *Department of Biochemistry and †Department of Social Medicine, Gorgan University of Medical Sciences, Gorgan, Iran.

Correspondence to: Mohammad Jafar Golalipour, Gorgan Congenital Malformation Research Center, Gorgan University of Medical Sciences, Gorgan, Iran, P.O. Box 49175-533.
E-mail: mjgolalipour@yahoo.com

Manuscript received: July 19, 2005, Initial review completed: September 28, 2005; Revision accepted: May 1, 2006.

Neural tube defects (NTD) comprise of a group of congenital malformations that include spina bifida, anencephaly and encephalocele. Reports have implicated zinc deficiency as one of the causative factors of NTDs. We compared the serum zinc level of 23 newborns having neural tube defects with 35 healthy controls by spectrophotometry during 2003-2004. Zinc deficiency was documented in 43.5% of the cases and 8.6% of the controls (P = 0.002). Multivariate logistic regression analysis revealed a significant association between the presence of NTDs and zinc deficiency (OR = 8.2, 95% CI: 1.9-34.7).

Key words: Neural tube defects, Spina bifida, Zinc.

Neural tube defects (NTD) are an important cause of perinatal morbidity and mortality(1,2). The incidence varies from 1/100 live births in certain regions of China to about 1/5000 live birth in Scandinavian countries(3). Etiology of NTD is considered multifactorial, with genetic, environmental and nutritional factors in all playing some role(4-6).

Maternal zinc deficiency may play a role in causation of NTD in the offspring(8). Studies have also documented low serum zinc levels in neonates born with neural tube defects(9). We conducted this study to look for an association of zinc deficiency and neural tube defects in North-East area of Iran, which has a high prevalence of neural tube defects.

Subjects and Methods

This hospital based case control study was conducted during 2003-04 at the Dezyani hospital in Gorgan located in the north of Iran. The sample population consisted of 23 newborns with NTD and 35 normal newborns selected at convenience. Data were collected regarding the maternal age, exposure to drug during pregnancy, history of abortions, and parity. Anthropometry of the newborn was recorded as per standard techniques. Peripheral blood sample was collected from all the newborns, serum was separated and analyzed for Zinc level by spectrophotometric method, using Randox Kit UR. Serum zinc level of less than 7.6 micro mol/L was used as the cut-off to label the individual as zinc-deficient. Parental consent was obtained for the study along with a clearance from Institutional ethical committee(10).

Categorical data were compared by Chi-square and Fisher’s exact test. Mann Whitney U test and unpaired Student’s ‘t’ test were used for comparison of means. Presence of neural tube defect was considered as the dependent factor in multivariate logistics regression.
analysis. Independent factors included in the analysis were parity, history of abortions, maternal drug exposure, and zinc deficiency as dichotomous variables. Data were analysed using SPSS 11.5 and STATA SE/8.

Results

Baseline characteristics of the two groups are depicted in Table 1. The groups were matched for parental age, parity, and obstetric history. However, control group babies were heavier and lengthy as compared to the study groups. The gestation of babies with NTD was less as compared to that of controls.

Serum zinc level (Mean ± SD) in NTD patients and normal newborns was 8 ± 3.9 micro mol per liter (µmol/L) and 12.3 ± 4.7 µmol/L, respectively. Overall 43.5% of patients and 8.6% of the controls in this study had zinc deficiency (P = 0.002). Multivariate logistic regression analysis showed an association between the presence of NTD and zinc deficiency (OR=8.2, 95% CI: 1.9-34.7) (Table II).

Discussion

The results from this study indicate that there is an association between NTD and zinc deficiency. These findings are similar with results from other researchers such as Velie et al in California(8), Groenen, et al., in Netherland(11), Cengiz, et al., in Turkey(12) and other studies(13,14). On other hand, Hombigdem, et al.(15), Nikolov, et al., in Sofiaioi(16), Weekes, et al.(17) reported that there is no relation between zinc deficiency and NTD. Most studies reporting a relation between zinc level and NTD were based on the maternal zinc status; studies using newborn serum are limited. Some studies in Mexico(9), Netherland(11) and Turkey(18) have shown that serum and hair zinc status in newborns are associated with risk of NTD. Srinivas, et al., in India(19) reported that there is a relationship between low zinc levels in newborns hair with NTD, but no differences were found in the serum levels. It is possible that these differences are due to diverse methods of zinc analysis.

Table I–Newborn Family History, Prenatal History and Newborn Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Cases (n = 23)</th>
<th>Control (n = 35)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age: Year (mean ± SD)</td>
<td>27.2 ± 6</td>
<td>25.7 ± 5.3</td>
<td>0.46§</td>
</tr>
<tr>
<td>Paternal age: Year (mean ± SD)</td>
<td>31.3 ± 6.3</td>
<td>29 ± 6</td>
<td>0.15§</td>
</tr>
<tr>
<td>Multiparity (n)</td>
<td>5 (20)</td>
<td>6 (16.2)</td>
<td>0.70¶</td>
</tr>
<tr>
<td>Pervious abortion (n)</td>
<td>4 (16)</td>
<td>5 (13.5)</td>
<td>0.79¶</td>
</tr>
<tr>
<td>History of other congenital malformations</td>
<td>4 (10.8)</td>
<td>1 (4.3)</td>
<td>0.64†</td>
</tr>
<tr>
<td>Newborn weight: gram (mean ± SD)</td>
<td>2865 ± 719</td>
<td>3439 ± 497</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Newborn height: cm (mean ± SD)</td>
<td>47 ± 4.6</td>
<td>50 ± 2.5</td>
<td>0.005*</td>
</tr>
<tr>
<td>Gestational age: week (mean ± SD)</td>
<td>36 ± 2.5</td>
<td>38.5 ± 0.9</td>
<td><0.0001§</td>
</tr>
<tr>
<td>Maternal exposure During 1st trimester (drug) (%)</td>
<td>7(28)</td>
<td>1(2.7)</td>
<td>0.006†</td>
</tr>
</tbody>
</table>

§: based on Mann-Witney U test; ¶: based on Pearson’s chi-square test; †: based on Fisher exact test; *: two independent sample ‘t’ test.
However, this study has certain limitations. Firstly, the study and control groups are not age and sex matched. Also, there are differences in anthropometry of the two groups which could have led to differences in zinc level. Also, maternal zinc status should also have been estimated. Some experts also feel that use of serum zinc as a measure of zinc nutriture itself is questionable. The selection of control is not random.

Despite these limitations, we are able to show that there is an association between neural tube defect and low serum zinc level in the newborns. This finding focuses attention once again to the importance of nutritional factor in the etiology of neural tube defects. Further studies should be carried out to verify or prove the cause-effect relationship of zinc deficiency with NTD.

Acknowledgment

The authors thank the research deputy of Gorgan University of Medical Sciences for the financial support. The authors also wish to thank the director, the manager, the infant ward of Dezyani hospital, and Mrs. Hajizade for their assistance. Special thanks also to Dr. Arezo Mirfazelei the neonatologist of Dezyani hospital.

Contributors: All authors were involved in design, data collection, analysis, review of literature and writing of this manuscript.

Funding: Gorgan University of Medical Sciences.

COMPETING INTERESTS: None stated.

REFERENCES

Key Message

- Newborns having neural tube defects have lower serum zinc concentrations as compared to healthy controls.