Pulmonary Agenesis

B. Rajshekhar
Sunil Gomber
Anurag Krishna*

Pulmonary agenesis is an extremely rare condition with a reported prevalence of 34 per 10 lacs live births (1). About half the cases have associated congenital malformations of the cardiovascular, skeletal, gastrointestinal or genitourinary systems (2). A history of recurrent chest infections during first year of life may be elicited. More often, the patient may be asymptomatic and the diagnosis is suspected from chest X-ray or detected during autopsy. The first case from India was reported at autopsy in 1923 (3). Subsequently, few other cases have been reported (4-7). The current communication documents 5 cases of pulmonary agenesis with varying presentations picked up over a period of 4 years. These cases were suspected and then documented during life.

Case Reports

Five cases of pulmonary agenesis diagnosed at G.T.B. Hospital, Delhi are presented. Four cases presented with recurrent history of chest infection and respiratory distress for the last 1 months to 2 years. All these patients were being treated by private practitioners for collapse consolidation before admission to our hospital. At our institution, the diagnosis of pulmonary agenesis was suspected after chest skiagram and special efforts were made to rule out the entity. One case who was asymptomatic was diagnosed accidentally by X-ray which was done to rule out traumatic injury after a fall from height. Of the 4 symptomatic cases, 3 had congenital anomalies in the form of hemivertebrae and one case also had an associated ventricular septal defect (Table I). Clinically, all cases had mediastinal shift with dullness and decreased air entry on the affected side. X-ray chest revealed symmetric bony cage, opaque hemithorax, mediastinal shift with herniation of the normal lung towards the affected side (Fig. 1). Ultrasonography done in all cases revealed absence of lung tissue and shifting of heart to the affected side. In 3 cases' the diagnosis was confirmed by CT scan of the chest (Figs. 2-4) and in two by bronchoscopy (Table I).

From the Department of Pediatrics and *Division of Pediatric Surgery, Department of Surgery, University College of Medical Sciences and G.T.B. Hospital, Delhi 110 095.
Reprint requests: Dr. Sunil Gomber, F-4 (A), Vijay Nagar, Delhi 110 009.
Manuscript received: July 30, 1996;
Initial review completed: September 17, 1996;
Revision accepted: December 23, 1996
TABLE I - Clinical Features and Diagnosis of Pulmonary Agenesis.

<table>
<thead>
<tr>
<th>Cases</th>
<th>Age at presentation</th>
<th>Age at onset of symptoms</th>
<th>Symptoms</th>
<th>Side congenitally</th>
<th>Associated anomalies</th>
<th>Diagnostic Modalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-</td>
<td>6 mo</td>
<td>3 mo</td>
<td>Fever, cough, respiratory</td>
<td>Right</td>
<td>Hemivertebrae D_{12}, L_{1}</td>
<td>Bronchoscopy</td>
</tr>
<tr>
<td>2.</td>
<td>12 yr</td>
<td>—</td>
<td>Asymptomatic</td>
<td>Right</td>
<td>None</td>
<td>Rudimentary right main bronchus seen</td>
</tr>
<tr>
<td>3.</td>
<td>4 yr</td>
<td>2\frac{1}{2} mo</td>
<td>Fever, cough, respiratory distress</td>
<td>Left</td>
<td>Hemivertebrae T_{9}-T_{12} Ventricular septal defect</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>6 yr</td>
<td>4 yr</td>
<td>-do-</td>
<td>Right</td>
<td>Hemivertebrae T_{7}-T_{8}</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>4 yr</td>
<td>1 mo prior to presentation</td>
<td>-do-</td>
<td>Right</td>
<td>None</td>
<td>Opening of right upper lobe bronchus closed. Rest of bronchial tree normal</td>
</tr>
</tbody>
</table>
Discussion

The developmental anomalies of the lung can be categorized into 3 groups(8): (i) Group I (Agenesis)-complete absence of bronchus, lung tissue and vessels; (ii) Group II (Aplasia)-Rudimentary bronchus is present but there is no lung tissue and pulmonary vessels; and (iii) Group III (Hy-poplasia)-Rudimentary bronchus as well as hypoplasia of lung tissue and pulmonary vessels.

The age of presentation is variable and depends on the typo of lesion present. Pulmonary agenesis is commonly associated with other congenital anomalies and may present in newborn period or in early life(9). Sometimes an isolated lesion may get detected in later years on routine X-ray done for some other ailment. Majority of patients present with recurrent chest infections since early life. Four of the five cases that we saw also presented with history of recurrent chest infection since early childhood. Clinically, the disease closely mimics pulmonary collapse of the affected side.

The entity should be kept in mind and
strongly suspected when chest X-ray reveals bony symmetry, opaque hemithorax with mediastinal shift and herniation of the contralateral lung to the affected side.

Three of the five cases described had associated hemivertebrae out of which one case also had a ventricular septal defect. A variety of congenital abnormalities may be associated with pulmonary agenesis. These may include cardiovascular (ventricular septal and atrial septal defects, tetralogy of Fallot), skeletal (hemivertebrae, absent ribs), gastrointestinal (esophageal atresia, imperforate anus), genitourinary (absent or
polycystic kidney) or other anomalies (hypoplastic trachea, ear deformities).

Diagnosis of pulmonary agenesis has been made on chest skiagram, bronchoscopy, bronchography and angiography. With the advent of CT scan, these invasive procedures which entail significant risk have become unnecessary(10). The characteristic CT findings reveal opaque hemithorax with mediastinal shift towards the affected side and bony cage symmetry. The CT scan also clearly delineates lung parenchyma with pulmonary and bronchial tree(11).

No treatment is required in asymptomatic cases. Treatment is necessary for chest infections. Patients having stumps (hypoplast bud) may require surgical removal if postural drainage and antibiotics fail to resolve the infection. Corrective surgery of associated congenital anomalies, wherever feasible, may be undertaken(7). Overall, prognosis depends on two factors. Firstly, the severity of associated congenital anomalies and secondly, involvement of the normal lung in any disease process.

To conclude, clinical findings of recurrent respiratory infections and radiologic evidence of opaque hemithorax, bony symmetry and herination of normal lung to the affected side, along with associated congenital anomalies, are suggestive of pulmonary agenesis.

REFERENCES