acquired infection, is caused by drug resistant organisms. This is probably because of the widespread use of antibiotics in the community. Thus, it is imperative that this irrational use of antibiotics be discouraged not only in the neonatal unit but also in the community. Further, the routine screening for ESBL production should be encouraged.

Shalini Anandan, Niranjan Thomas*, Balaji Veeraraghavan and Atanu K Jana*
From the Departments of Microbiology and *Neonatology, Christian Medical College, Vellore, India.
niranjan@cmcvellore.ac.in

REFERENCES


Spectrum of Congenital Heart Diseases in Kashmir, India

A retrospective analysis of case-records data of 53,653 patients (0-18 years) over a two and half year period was conducted to ascertain the spectrum of congenital heart diseases. Two hundred and twenty one patients were found having congenital heart diseases; a prevalence of 4.1/1000. Ventricular septal defect (VSD) was the most frequent lesion seen in 69 (31.2%), followed by patent ductus arteriosus (PDA) in 36 (16.3%) children. Tetralogy of Fallot (TOF) was the most frequent cyanotic heart disease seen in 17 (7.8%) patients.

Key words: Congenital heart disease, India, Prevalence.

The prevalence of congenital heart disease (CHD) in India ranges between 3.9 – 26.4 per 1000 live births, in hospital based studies(1-3). We conducted this study to ascertain the prevalence and spectrum of CHD in children (aged 0-18 years) including those who were born in or attending our hospital over a two and half year period (Aug 2006–Jan 2009). Care was taken to avoid duplicate recording of the cases.

A total of 53,653 patients (aged 0-18 years) attended our hospital; suspected cases were subjected to detailed clinical examination, X-ray chest and ECG. Diagnosis was confirmed by echocardiography, as per standards of the American Society of Echocardiography(4). Echocardiography was performed by senior cardiologists twice in a week. Overall, 221 patients (113 males, 51.1%) were confirmed to have CHD. The CHDs in the order of frequency were; VSD in 69 (31.2%), PDA in 36 (16.3%), complex CHD’s in 26 (11.8%), ASD in 25 (11.3%), tetralogy of Fallot (TOF) in 17 (7.8%), pulmonary stenosis (PS) in 15 (6.8%), and
atrioventricular canal malformation in 11 (5%). Aortic stenosis (AS), transposition of great arteries (TGA), corrected TGA, hypoplastic left heart syndrome, total anomalous pulmonary venous connection, and single ventricle were documented in 3 subjects each. Tricuspid atresia, dextrocardia, coarctation of aorta and truncus arteriosus were present in 1 patient each. Sixty (27.1%) patients were neonates, 106 (48%) were infants and toddlers, 27 (12.2%) were preschool, 16 (7.2%) school children and 12 (5.4%) were adolescents. Maximum number [166 (75.1%)] comprised of youngsters between the age group of 0-3 years.

Our study findings are similar to those published earlier from other parts of India (5-7). Our study had certain limitations including its retrospective nature, missing cases due to still births, immediate neonatal deaths at home, non availability of autopsy facilities, asymptomatic CHDs and improper follow up. Thus the estimated prevalence might be an underestimate of the true burden of the CHD in community, in particular, Kashmir.

Mohd Ashraf, J Chowdhary, K Khajuria and AM Reyaz
Department of Pediatrics, G B Pant General Hospital, Kashmir, India. aashraf_05@yahoo.co.in

REFERENCES